Evaluating Spectral Indices for Assessing Fire Severity in Chaparral Ecosystems (Southern California) Using MODIS/ASTER (MASTER) Airborne Simulator Data
نویسندگان
چکیده
Wildland fires are a yearly recurring phenomenon in many terrestrial ecosystems. Accurate fire severity estimates are of paramount importance for modeling fire-induced trace gas emissions and rehabilitating post-fire landscapes. We used high spatial and high spectral resolution MODIS/ASTER (MASTER) airborne simulator data acquired over four 2007 southern California burns to evaluate the effectiveness of 19 different spectral indices, including the widely used Normalized Burn Ratio (NBR), for assessing fire severity in southern California chaparral. Ordinal logistic regression was used to assess the goodness-of-fit between the spectral index values and ordinal field data of severity. The NBR and three indices in which the NBR is enhanced with surface temperature or emissivity data revealed the best performance. Our findings support the operational use of the NBR in chaparral ecosystems by Burned Area Emergency Rehabilitation (BAER) projects, and demonstrate the potential of combining optical and thermal data for assessing fire severity. Additional testing in more burns, other ecoregions and different vegetation types is required to fully understand how (thermally enhanced) spectral indices relate to fire severity.
منابع مشابه
Mapping burn severity in a disease-impacted forest landscape using Landsat and MASTER imagery
Global environmental change has increased forest vulnerability to the occurrence of interacting disturbances, including wildfires and invasive diseases. Mapping post-fire burn severity in a disease-affected forest often faces challenges because burned and infested trees may exhibit a high similarity in spectral reflectance. In this study, we combined (preand post-fire) Landsat imagery and (post...
متن کاملOptimum pixel size for hyperspectral studies of ecosystem function in southern California chaparral and grassland
Hyperspectral remotely sensed data are useful for studying ecosystem processes and patterns. However, spatial characterization of such remotely sensed images is needed to optimize sampling procedures and address scaling issues. We have investigated spatial scaling in ground-based and airborne hyperspectral data for canopyto watershed-level ecosystem studies of southern California chaparral and ...
متن کاملA MODIS/ASTER Airborne Simulator (MASTER) Imagery for Urban Heat Island Research
Thermal imagery is widely used to quantify land surface temperatures to monitor the spatial extent and thermal intensity of the urban heat island (UHI) effect. Previous research has applied Landsat images, Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER) images, Moderate Resolution Imaging Spectroradiometer (MODIS) images, and other coarseto medium-resolution remotely sens...
متن کاملEstimating Live Fuel Moisture from MODIS Satellite Data for Wildfire Danger Assessment in Southern California USA
The goal of the research reported here is to assess the capability of satellite vegetation indices from the Moderate Resolution Imaging Spectroradiometer onboard both Terra and Aqua satellites, in order to replicate live fuel moisture content of Southern California chaparral ecosystems. We compared seasonal and interannual characteristics of in-situ live fuel moisture with satellite vegetation ...
متن کاملHyperspectral technologies for wildfire fuel mapping
Wildfire is one of the most significant forms of natural disturbance, impacting a wide range of ecosystems ranging from boreal forests to Mediterranean shrublands and tropical rainforest. One of the greatest uncertainties in assessing fire danger is our knowledge of fuels. Fuel properties vary at fine spatial scales, change depending on stand age and prior disturbance history and vary seasonall...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Remote Sensing
دوره 3 شماره
صفحات -
تاریخ انتشار 2011